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Nonlinear forecasting of non-uniform chaotic
attractors in an enzyme reactiont
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Nonlinear forecasting was used to predict the time evolution of fluctuating con-
centrations of dissolved oxygen in the peroxidase—oxidase reaction. This reaction
entails the oxidation of NADH with molecular oxygen as the electron acceptor.
Depending upon the experimental conditions, either regular or highly irregular
oscillations obtain. Previous work suggests that the latter fluctuations are almost
certainly chaotic. In either case, the dynamics contain multiple timescales, which
fact results in an uneven distribution of points in the phase space. Such ‘non-
uniformity,’ as it is called, is a rock on which conventional methods for analysing
chaotic time series often founder. The results of the present study are as follows.
1. Short-term forecasting with local linear predictors yields results that are con-
sistent with a hypothesis of low-dimensional chaos. 2. Most of the evidence for
nonlinear determinism disappears upon the addition of small amounts of observa-
tional error. 3. It is essentially impossible to make predictions over time intervals
longer than the average period of oscillation for time series subject to continuous
and frequent sampling. 4. Far more effective forecasting is possible for points on
Poincaré sections. 5. An alternative means for improving forecasting efficacy using
the continuous data is to include a second variable (NADH concentration) in the
analysis. Since non-uniformity is common in biological time series, we conclude
that the application of nonlinear forecasting to univariate time series requires
care both in implementation and interpretation.
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1. Introduction
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< In the past decade, numerous methods have been proposed to distinguish low-
> 'S dimensional chaos from the output of stochastic processes. Of these, two of the
@) : most widely utilized entail estimating the system’s fractal dimension (Grass-
ez = berger & Procaccia 1983) and its maximum Lyapunov exponent (Wolf et al.
= Q) 1985). Specifically, non-integer dimensions and positive exponents, so-called ‘fin-
O gerprints’ of chaos, have been taken as evidence of nonlinear determinism (Abra-
= w ham et al. 1989; Tsonis 1992). In part, the popularity of this approach reflects the
-
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fact that dimension and Lyapunov exponents feature prominently in the theory
of chaotic dynamical systems. Moreover, the algorithms in question are easily im-
plemented on the computer. Unfortunately, there is a growing body of evidence
(Osborne & Provenzale 1989; Ruelle 1990; Ellner 1991) to suggest that these
and other methods designed to estimate dynamical invariants can be ‘fooled’ by
stochastic time series in which there is demonstrably no chaotic behaviour at all.

One approach to resolving this dilemma is the ‘method of surrogate data’
whereby analyses of experimental data are compared with corresponding calcu-
lations carried out on stochastic data sets reproducing the linear properties of
the original (Theiler et al. 1992). An alternative methodology, and the subject
of the present report, is due to Casdagli (1992). Here, techniques from nonlinear
forecasting (see below) are utilized to evaluate stochastic alternatives to nonlin-
ear determinism. Rejection of the null hypotheses is taken as evidence favouring,
though not necessarily proving, that the data are, in fact, chaotic.

Nonlinear forecasting (Farmer & Sidorowich 1987) is based on the observation
that even for chaotic systems, nearby points in the phase space travel together
over the short term and, in some instances, for extended time periods. Accord-
ingly, it is possible to approximate the ‘rules’ by which a chaotic system evolves,
even though one has no idea as to the actual equations governing the motion.
Sugihara & May (1990) were among the first to apply nonlinear forecasting to
biological time series. They argued that chaotic data exhibit a characteristic ‘pre-
diction profile’, a consequence of sensitivity to initial conditions (Ruelle 1979),
whereby the initial decline in predictability follows a negative exponential (see
also, Farmer & Sidorowich 1987; Wales 1991). This pattern, they maintained was
relatively insensitive to short data sets and noise, and could be used to distinguish
chaos from regular dynamics in the presence of observational error.

In fact, certain types of stochastic behaviour (Lefebvre et al, 1993) exhibit sim-
ilar declines in predictability. However, the scaling behaviour of predictive power
with prediction time of such data is different from that of chaotic data (Sugihara
& May 1990; Tsonis & Elsner 1992). Additionally, Casdagli (1992) has proposed
a variant on the basic method which he suggests can be used to distinguish low-
dimensional chaos from stochastic dynamics. Essentially, one uses local linear
maps, induced from the reconstructed flow, to forecast the time evolution of the
system. By varying what is meant by ‘local’, one can determine whether the dy-
namics are more in accordance with chaos or stochastic autoregression. That is,
for a chaotic system, increasing the size of the neighbourhoods for which the lin-
ear maps are computed should lead to declining predictability, i.e. the nonlinear
nature of the flow means that linear approximations to the vector field change
over the phase space. Conversely, for linear stochastic systems, the rules of mo-
tion do not change over the phase space. In this case, increasing neighbourhood
size results in more points being used to induce the maps. Hence, the error re-
sulting from finite data sets will be reduced and forecasting efficacy will improve
or remain constant.

Most of the algorithms used to estimate fractal dimensions and the like were
developed and tested using data from dynamical systems in which points are
more or less evenly distributed in the phase space. However, in biology, we of-
ten encounter highly unequal distributions. Following Nicolis et al. (1983), we
shall refer to systems exhibiting such distributions as ‘non-uniform’. Biological
examples of non-uniform dynamics include the irruptive behaviour of ecological
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populations including insects and small mammals (May 1978), fluctuations in in-
cidence rates of childhood diseases (Schaffer et al. 1988; Tidd et al. 1993), cardiac
activity as indexed by the electrocardiogram (Babloyantz & Destexhe 1988), and
the relaxation oscillators observed in certain enzyme-catalysed reactions (Geest
et al. 1993). Even in the absence of noise, non-uniformity can play havoc with
nonlinear methods. For example, in the case of irruptive time series, the stan-
dard techniques underestimate both the fractal dimension and the maximum
Lyapunov exponent (Schaffer et al. 1988; Tidd et al. 1993). Conversely, when
applied to relaxation oscillators, these methods underestimate the dimension and
overestimate the exponent (Geest et al. 1993).

Nonlinear forecasting schemes also have problems with non-uniform dynamics.
In particular, predictability is often much lower than one would anticipate from
other estimates of the system’s sensitivity to initial conditions (Tidd et al. 1993;
Geest et al. 1993). Nonetheless nonlinear forecasting can provide useful informa-
tion about non-uniform time series which cannot be obtained from attempts to
estimate fractal dimensions and Lyapunov characteristic exponents. For example,
forecasting may help to discriminate between different deterministic or stochastic
models of the data (Tidd et al. 1993; Geest et al. 1993).

In the present paper, we use nonlinear forecasting to study non-uniform data
from a biochemical system, the peroxidase—oxidase reaction. The results support
previously reported evidence (Olsen & Degn 1977; Olsen 1983; Geest et al. 1992,
1993) for low-dimensional chaos in this system. However, if the experimental data
are perturbed by the addition of even small amounts of noise, much of the evidence
for nonlinear determinism disappears. A further consequence of non-uniformity
in the experimental data is that predictions based on embedded time series of
O, concentration are essentially impossible for prediction times longer than an
average period of oscillation. Predictions over longer timescales can be achieved
if a second measured variable is used as a reference variable or if predictions are
made using return maps rather than continuous time series.

2. The experimental system

The peroxidase—-oxidase (PO) reaction is the oxidation of reduced nicotinamide
adenine dinucleotide (NADH) with molecular oxygen as the electron acceptor:

O, + 2NADH + 2H + 2H,0 + 2NAD™.

When the reaction takes place at low pH with continuous supplies of both NADH
and O,, and in the presence of 2,4-dichlorophenol and methylene blue, the con-
centrations of O, and NADH oscillate (Nakamura et al. 1969; Olsen & Degn,
1978). In addition to periodic behaviour, both quasi-periodicity (Samples et al.
1992; Hauck & Schneider 1993) and chaos (Olsen & Degn 1977; Geest et al. 1992,
1993; Rys & Wang 1992; Forster et al.

1994; Hauck & Schneider 1994) have been observed. In addition, there is exper-
imental evidence for a period doubling route to chaos followed by stable period-3
oscillations as the concentration of dichlorophenol is increased (Geest et al. 1992;
Steinmetz et al. 1993; Hauck & Schneider 1994). Since the evidence for chaos in
this system is unequivocal, the data constitute an ideal test case for determining
the efficacy and reliability of published methods for detecting nonlinearity and
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chaos in experimental time series. An additional advantage of the PO system is
that the experimental results are largely reproducible by a simple mathematical
model consisting of four nonlinear differential equations (Olsen 1983).

3. Materials and methods

Horseradish peroxidase (RZ 3.0) and NADH were purchased from Boehringer,
Mannheim. 2,4-dichlorophenol and methylene blue (analytical grade) were ob-
tained from Merck.

Experiments were conducted in a 20x20 mm quartz cuvette fitted with a stir-
rer. The cuvette was mounted in an Aminco DW 2000 dual wavelength spec-
trophotometer or in a Shimadzu UV-1201 single beam spectrophotometer. NADH
was measured as the absorbance change at 360 nm or as the difference in ab-
sorbance at 360 nm and 380 nm. The oxygen concentration was measured with
a Clark electrode inserted into the side of the cuvette. The data from the spec-
trophotometer and the oxygen electrode were both sampled at 1s intervals by
a personal computer through an interface board and stored on disk for later
analyses. There were two experimental protocols.

Protocol I is described by Geest et al. (1992, 1993). Here, a 0.08-0.2 M solu-
tion of NADH is pumped at a rate of 20401 h~! into a 7 ml reaction mixture
containing 0.1 M sodium acetate, pH 5.1, 30-40 uM 2,4-dichlorophenol, 0.1 yM
methylene blue and 0.5-1.0 M peroxidase. The oxygen was transported into the
reaction mixture by diffusion from a gas head space above the liquid containing a
mixture of oxygen and nitrogen with an O, content of 1.42% (v/v). The oxygen
transfer constant was 0.0037 s™1.

Protocol II involves a continuous flow stirred tank reactor (CSTR) with an effec-
tive liquid volume of 6.9 ml. The flow rate was controlled by a Harvard Apparatus
model 22 syringe pump. Reactants were fed into the CSTR as two solutions in gas-
tight syringes (Hamilton). One syringe contained 0.2 M sodium acetate, pH 5.1,
0.5 uM peroxidase, 0.2 uM methylene blue and 100 uM 2,4-dichlorophenol and the
other contained 0.4 mM NADH in distilled water. The solutions were equilibrated
with pure nitrogen before use. The dilution rate for the inflow of reactants was
held constant at 4.4 x 107*s™1. In these experiments the oxygen content of the
gas phase was 0.63% (v/v) and the oxygen transfer constant was 0.0048 s~*. The
temperature was 28 °C in all experiments.

Four apparently chaotic experimental time series (O, and NADH concentra-
tions) were the subjects of analysis. Of the four data-sets, three were obtained
via Protocol I described above, while the fourth was obtained via Protocol II. In
each case, the data were subdivided and the ability of the first part, the ‘atlas’, to
predict the time evolution of the second assessed. Predictions were generated by
zeroth, first and second order local predictors following the approach of Farmer
& Sidorowich 1987 (see also Schaffer & Tidd 1990). Predictability was indexed
by the square of the standard correlation coefficient of predicted against observed
concentrations and also by the normalized root mean square error.

4. Results

In figure 1, we give an example of chaotic fluctuations of [O,] in the experimen-
tal system. Here we display a representative time series, a reconstructed (Takens
1981) phase portrait, and a return map. We emphasize that qualitatively sim-
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Figure 1. Chaotic dynamics in the peroxidase-oxidase reaction. (a) Time series of oxygen, (b)
three-dimensional phase plot of the reconstructed time series using a delay of 6 s, and (c) return
map constructed from a Poincaré section. The experiment was made using method I described
in §3. The experimental conditions were: 0.7 M peroxidase, 0.1 uM methylene blue and 35.7 uM
dichlorophenol; 0.2 M NADH was infused at a rate of 22.5 1 h~!. Other conditions as described
in §3.

ilar dynamics were observed for both experimental protocols. In figure 10 we
have plotted the phase portrait as points to emphasize the non-uniformity of the
data. More than two thirds of the points are concentrated in the narrow bundle
indicated by the arrow.

One approach to identifying nonlinearity in experimental time series involves
nonlinear forecasting via local linear predictors (Casdagli 1992). Here, the data
are embedded in an m-dimensional space by application of Takens’s method of de-
lays. For each embedding dimension, m, one varies the number, k, of neighbouring
(in the phase space) atlas points used to forecast the time evolution of the tar-
get point in question. For each k, we calculate the normalized root-mean-square
error, E,,(k), averaged over all the target points and looks for the k-value, kuyin,
which gives the lowest E,,(k). Casdagli argues that if kn;, is small, then the data
are best described by a deterministic, nonlinear model. Conversely, intermediate
values of kmin suggest that the best descriptor of the data is nonlinear stochastic
models, while high values of ki, correspond to linear stochastic models.

Figure 2a shows a plot of E,,(k) against k for various embedding dimensions.
Overall, predictability declines as the number of points (and hence the size of the
neighbourhood) used to generate the predictions increases. According to Casdagli,
this suggests that the data are best described by a deterministic, nonlinear model.
Further evidence for this conclusion is presented in figure 2b. Here we plot E,, (k)
for a set of ‘surrogate data’ which reproduce its power spectrum but with the
phases randomized. As discussed by Theiler et al. (1992), the surrogate data are
equivalent to output from a linear stochastic process. In this case, forecasting

Phil. Trans. R. Soc. Lond. A (1994)
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Figure 2. Forecasting errors for measurements of oxygen from the PO reaction and corresponding
surrogate data generated by randomizing the phases of the discrete Fourier transform of the
original data and inverting the randomized spectrum. (a) Original data; (b) surrogate data; (c)
original data with 0, 1, and 2% observational noise. 3780 data were embedded in dimensions 2
to 6 (in (¢) the embedding dimension was 3) using a delay of 6 s. The first 3000 points were
used to predict the remaining 780 points. A local linear prediction scheme was used and the
number of nearest neighbours was varied. Prediction time was 6 s. Experimental conditions as
in figure 1.
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efficacy declines as we increase the number of points used to induce predictions.
This, of course, is what Casdagli tells us should happen, and it indicates in a
dramatic way that the experimental time series contains functionally important
nonlinearities. In short, application of Casdagli’s method provides yet another
bit of evidence supporting a chaotic interpretation of irregular fluctuations in the
reaction.

Sadly, the efficacy of this approach turns out to be sensitive to the level of
observational error which in many systems is far greater than that encountered
in the case of the PO reaction. Specifically, if we corrupt the experimental data
with small (1-2%) amounts of noise, Ky, is shifted toward higher values or van-
ishes completely (figure 2¢). At 2% noise predictability is lost to the extent that,
according to Casdagli, one can only conclude that the time series is nonlinear,
but not that it is low-dimensional, i.e. chaotic. In other words, a small increase
in observational error can weaken or entirely eliminate the evidence for low-
dimensional chaos as indicated by the present technique. Elsewhere, we argue
that this sensitivity is a consequence of the data’s non-uniform character.

Because of sensitivity to initial conditions, it is expected (Farmer & Sidorowich
1987; Sugihara & May 1990; Wales 1991; Tsonis & Elsner 1992) that predictability
for chaotic data should decline with increasing length of the prediction interval.
Moreover, there exist scaling statistics which, at least in principle, relate pre-
dictability profiles to the rate at which neighbouring trajectories diverge in the
phase space. For our data we observe such a decline in prediction efficacy with in-
creasing length of the prediction interval. However, if we compare the prediction
profiles obtained for the continuous data and for the maps respectively, we find
that the predictive power of the map is far greater than that of the continuously
sampled time series. Additionally, the scaling statistics of the two profiles (data
not shown) are different, to the point that the profile for the continuously sam-
pled data is inconsistent with an interpretation of low-dimensional chaos (Wales
1991; Tsonis & Elsner 1992).

Why are return maps more predictable than the continuous data? To answer
this question we made a number of forecasts of points from different regions of the
reconstructed attractor. Two such forecasts are shown in figure 3. Here we com-
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Figure 3. Nonlinear forecasting of different regions of the reconstructed phase plot. In (a) and
(c) the boxes indicate the points to be predicted. In (b) and (d) the predicted (filled circles) and
observed values (solid lines) are shown for a prediction time of 240 s. The data were embedded in
three dimensions using a delay of 10 s. The first 2000 points were used to predict the remaining
1780 points. A zero-order prediction scheme was used. Experimental conditions as in figure 1.

pare the predictability of a point on the Poincaré section used to construct the
return map with that of a second point in the compressed region of the attractor.
In the latter case predicted and observed values diverge rapidly. Conversely tra-
jectories based at points on the section are much more predictable. This suggests
that the limited predictive power of the continuous data is due to the preponder-
ance of points in the compressed region, which has low predictability, and hence
to the non-uniformity.

Similar results (not shown) were obtained using data produced by a mathe-
matical model (Olsen 1983) of the PO reaction, i.e. the predictive power of points
in the compressed region of the attractor is essentially zero for values of T}, in
excess of the average period of oscillation. Why is this compressed region so un-
predictable? To understand this we studied Poincaré sections of this region for the
model data. We found that these sections evidence a complex mixing of trajec-
tories with the consequence that nearby points on the section do not necessarily

Phil. Trans. R. Soc. Lond. A (1994)
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Figure 4. Prediction profile for continuous oxygen data and continuous oxygen plus NADH data.
Prediction time is normalized to the average period of oscillation which was 200 s. The data-set
contained 10000 measurements of oxygen and NADH. First the oxygen data were embedded in
three dimensions using an embedding delay of 20 s. The first 7000 points were used to predict
the remaining 3000 points and the squared correlation coefficient was plotted against prediction
time. Next the oxygen data were embedded in two dimensions and the NADH data were used as
the third variable. Again the first 7000 points were used to predict the last 3000 points and the
squared correlation coefficient was plotted against prediction time. The experiment was made
using Method II described in § 3.

correspond to nearby trajectories in state space at a later time. Obviously, what
is needed is a way of ‘unfolding’ these regions such that points which are initially
close together do not wind up too far apart. In principle, one can do this by
increasing the embedding dimension. However, for experimental systems subject
to dynamical and observational noise, this introduces yet another source of error,
i.e. the ‘dimensions’ are lagged values of the observed variable and the longer
the lag the greater the error. Alternatively, one can include a second variable
in the analysis. Figure 4 illustrates the results of supplementing the [O,] time
series with simultaneous determinations of [NADH], i.e. the oxygen data were
embedded in two dimensions and the NADH data used as a third variable. As
one might hope, long term predictive power is greatly enhanced by the inclusion
of this extra variable.

5. Discussion

The foregoing analysis may be viewed as an exercise in the study of non-
uniform data. Having investigated the effects of noise on the prediction statistics
for such data, we conclude that evidence for nonlinear determinism is easily ob-
scured by small amounts of measurement error. Moreover, prediction profiles of
non-uniform data reveal a scaling behaviour inconsistent with the hypothesis of
low-dimensional chaos, i.e. predictability declines too rapidly. In short, nonlin-
ear forecasting applied to non-uniform chaotic data can easily lead to the wrong
conclusion, i.e. that the time series evidence stochasticity as opposed to chaos.
As noted above, non-uniform data in biological systems are a commonplace and
are often contaminated with far more noise than the PO data which are obtained
in a carefully controlled laboratory situation. A much studied example of non-
uniform biological data are monthly notifications of measles in large First World

Phil. Trans. R. Soc. Lond. A (1994)
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cities. Following the application of nonlinear forecasting to such time series, Ell-
ner (1992) and Casdagli (1992) concluded that the evidence for low-dimensional
chaos in the data is at best ambiguous. Ellner, in particular, pointed to the fact
that log transforming the data resulted in an increase in long term predictive
power from which he concluded that the shape of the prediction profile is inde-
cisive. In fact, for irruptive time series, the effect of such a transformation is to
reduce the degree of non-uniformity, which is also the effect of restricting one’s
analysis to return maps computed from Poincaré sections of the sort shown in
figure 1. Accordingly, we would argue that Ellner’s results are consistent with the
thrust of the present paper which is that non-uniformity is a source of Type II
error whereby one incorrectly accepts the null hypothesis of stochastic dynamics.
For the particular case of measles, this point of view is further supported by the
results reported by Tidd et al. (1993).

This work was supported by grants from the Danish Natural Science Research Council to LFO
and from National Institutes of Health to W.M.S. We thank Bruce Kendall for stimulating
discussions.
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Discussion

D. Lroyp (Microbiology Group, UWCC, Cardiff, U.K.). Are there any ‘dead
spots’ in the continuously stirred reactor? Is the system spatially homogeneous?
For instance, what happens if you change the stirring rate?

L. F. OLsEN. If we change the stirring rate we also change the surface area of
the liquid. This results in a change in the oxygen supply rate and hence a change
in dynamics irrespective of whether the system is spatially homogeneous or not.
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